

Available at

www.**Elsevier**Mathematics.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 125 (2003) 26-41

http://www.elsevier.com/locate/jat

On asymptotic properties of Freud–Sobolev orthogonal polynomials

Alicia Cachafeiro, a,1 Francisco Marcellán, b,2 and Juan J. Moreno-Balcázar d,*,3

^a Departamento de Matemática Aplicada, Universidad de Vigo, Spain

^b Departamento de Matemáticas, Universidad Carlos III de Madrid, Spain

^c Departamento de Estadística y Matemática Aplicada, Universidad de Almería,

La Cañada de San Urbano s/n, 04120 Almeria, Spain

^d Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Spain

Received 17 July 2002; accepted in revised form 16 September 2003

Communicated by Walter Van Assche

Abstract

In this paper we consider a Sobolev inner product

$$(f,g)_{S} = \int fg \, d\mu + \lambda \int f'g' \, d\mu \tag{*}$$

and we characterize the measures μ for which there exists an algebraic relation between the polynomials, $\{P_n\}$, orthogonal with respect to the measure μ and the polynomials, $\{Q_n\}$, orthogonal with respect to (*), such that the number of involved terms does not depend on the degree of the polynomials. Thus, we reach in a natural way the measures associated with a Freud weight. In particular, we study the case $d\mu = e^{-x^4} dx$ supported on the full real axis and we analyze the connection between the so-called Nevai polynomials (associated with the Freud

^{*}Corresponding author. Departamento de Estadística y Matemática Aplicada, Universidad de Almería, La Cañada de San Urbano s/n, 04120 Almeria, Spain. Fax: +34-950-015167.

E-mail address: balcazar@ual.es (J.J. Moreno-Balcázar).

¹Research partially supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under Grant BFM 2000-0015.

²Research partially supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under Grant BFM2003-06335-C03-02, by INTAS Project 2000-272 and by the NATO collaborative Grant PST.CLG. 979738.

³Research partially supported by Junta de Andalucía, Grupo de Investigación FQM 0229, Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under Grant BFM 2001-3878-C02-02 and INTAS Project 2000-272.

weight e^{-x^4}) and the Sobolev orthogonal polynomials Q_n . Finally, we obtain some asymptotics for $\{Q_n\}$. More precisely, we give the relative asymptotics $\{Q_n(x)/P_n(x)\}$ on compact subsets of $\mathbb{C}\backslash\mathbb{R}$ as well as the outer Plancherel–Rotach-type asymptotics $\{Q_n(\sqrt[4]{n}x)/P_n(\sqrt[4]{n}x)\}$ on compact subsets of $\mathbb{C}\backslash[-a,a]$ being $a=\sqrt[4]{4/3}$. © 2003 Elsevier Inc. All rights reserved.

MSC: 33C45; 33C47; 42C05

Keywords: Sobolev orthogonal polynomials; Freud polynomials; Asymptotics

1. Introduction

The study of algebraic and analytic properties of polynomials orthogonal with respect to an inner product

$$(p,q)_S = \sum_{k=0}^N \int_{\mathbb{R}} \lambda_k p^{(k)}(x) q^{(k)}(x) d\mu_k(x), \tag{1}$$

where $(\mu_k)_{k=0}^N$ are measures supported on subsets of the real line and p, q are polynomials with real coefficients has attracted the interest of many researchers in the last years (see [10]). Despite the interest of this case (1), the approach was started for N=1. In such a situation several examples were very carefully analyzed from an algebraic point of view. The first one (see [7]) is related to Gegenbauer measures, i.e., $d\mu_0(x)=d\mu_1(x)=(1-x^2)^\alpha\chi_{[-1,1]}\,dx, \ \alpha>-1$ which represents a situation of measures with compact support. A second one, for unbounded support, is analyzed in [8] when $d\mu_0(x)=d\mu_1(x)=x^\alpha e^{-x}\chi_{\mathbb{R}^+}\,dx, \ \alpha>-1$. In both cases, the basic differences with the so-called standard case (N=0) are emphasized. In particular, the three-term recurrence relation for the orthogonal polynomials fails and, as a consequence, the study of algebraic and analytic properties of the corresponding sequences of orthogonal polynomials needs different tools.

In a more general framework, if μ_0 or μ_1 are classical measures (Jacobi, Laguerre, Hermite), then the basic idea is to consider a companion measure which satisfies the so-called coherence condition or symmetric coherence for symmetric measures (see [3]). The goal of coherence is the fact that we can establish a finite algebraic relation between the orthogonal polynomials, $\{P_n\}$, associated with μ_0 and the orthogonal polynomials, $\{Q_n\}$, with respect to the inner product (1) for N=1, the so-called Sobolev orthogonal polynomials. This algebraic relation plays an important role in the study of $\{Q_n\}$ since it allows to express the polynomials $\{Q_n\}$ in terms of the standard polynomials $\{P_n\}$ and thus it is possible to carry out a study of $\{Q_n\}$ from the algebraic, analytic and computational points of view. Notice that in [13] it was proved that if (μ_0, μ_1) is a coherent pair of measures, then one of them must be classical and its companion is a perturbation of it.

If both measures μ_0 and μ_1 have unbounded support then, except for coherent pairs, very few examples are known when μ_0 and μ_1 are non-classical measures with

non-zero absolutely continuous part. However, in the bounded case, i.e., the measures have compact support, quite a few things are known when both measures are non-classical. For instance, a nice survey about asymptotics of Sobolev orthogonal polynomials is [10]. Indeed, one of the aims of our contribution is to analyze orthogonal polynomials for an inner product (1) when $d\mu_0(x) = d\mu_1(x) = e^{-x^4}\chi_{\mathbb{R}} dx$, an example of a non-classical measure. The sequence of standard polynomials orthogonal with respect to such kind of measures has been introduced by Nevai [14,15] in the framework of the so-called Freud measures. They belong to the set of semiclassical measures, i.e., the linear functional $u: \mathbb{P} \to \mathbb{R}$ given by $(u, p) = \int_{\mathbb{R}} p(x) d\mu(x)$, where \mathbb{P} is the linear space of polynomials with real coefficients is such that there exist polynomials ϕ , ψ with deg $\psi \geqslant 1$ and (see [9])

$$D(\phi u) = \psi u. \tag{2}$$

Indeed, Freud measures are defined by weight functions $w(x) = e^{-P}$ where P is a monic polynomial of degree 2n.

For Sobolev inner products (1) with N=1 and $\mu_0=\mu_1=\mu$ the following result is proved in [2].

Proposition 1. If μ is a semiclassical measure such that (2) holds, then there exists a non-negative integer number s such that

$$\phi(x)P_n(x) = \sum_{j=n-s}^{n+s'} \alpha_{n,j}Q_j(x), \quad \alpha_{n,n-s} \neq 0,$$
(3)

where $\deg \phi = s'$.

In what follows, we use the inner product

$$(p,q)_S = \int_{\mathbb{R}} pq \, d\mu + \lambda \int_{\mathbb{R}} p'q' \, d\mu, \quad \lambda > 0, \tag{4}$$

and we denote by $\{P_n\}$ the sequence of orthogonal polynomials associated with $\mu=\mu_0=\mu_1$ and by $\{Q_n\}$ the sequence of orthogonal polynomials with respect to (4). We are interested in a converse result of Proposition 1, i.e., if we consider an inner product (4), such that (3) holds, then the goal is to know what information about the measure μ can be given. Indeed, we get

Theorem 1. Relation (3) holds if and only if the measure μ is semiclassical. Furthermore, the polynomials ϕ , ψ in (2) can explicitly be given.

In particular, if $\phi \equiv 1$ then μ is a Freud measure.

Our second step is to analyze orthogonal polynomials associated with the Sobolev inner product (4) when $d\mu = e^{-x^4} dx$. In Section 3 we deduce the connection between the sequences $\{P_n\}$ and $\{Q_n\}$. In such a way we can obtain an explicit expression for $\{Q_n\}$ in terms of $\{P_n\}$. From it we deduce in Section 4 the relative asymptotics of Q_n

with respect to P_n as well as a Plancherel–Rotach-type asymptotics formula for Q_n . Here the scaling in the variable is needed.

2. Proof of Theorem 1

Let ϕ be a polynomial of degree s' such that

$$\phi(x)P_n(x) = \sum_{j=n-s}^{n+s'} \alpha_{n,j} Q_j(x), \quad n \geqslant s, \tag{5}$$

with $\alpha_{n,n-s} \neq 0$ and $s' \leq s$. From (5), we get

$$0 = (\phi(x)P_n(x), Q_j(x))_s, \quad j = 0, 1, \dots, n - s - 1,$$
(6)

$$0 \neq (\phi(x)P_n(x), Q_{n-s}(x))_S = \alpha_{n,n-s}(Q_{n-s}, Q_{n-s})_S.$$
(7)

From (6),

$$0 = \int_{\mathbb{R}} \phi(x) P_n(x) Q_j(x) d\mu + \lambda \int_{\mathbb{R}} (\phi(x) P_n(x))' Q_j'(x) d\mu$$

=
$$\int_{\mathbb{R}} P_n(x) [\phi(x) Q_j(x) + \lambda \phi'(x) Q_j'(x)] d\mu + \lambda \int_{\mathbb{R}} \phi(x) P_n'(x) Q_j'(x) d\mu.$$

The degree of the polynomial inside the brackets is s' + j and taking into account that $0 \le j \le n - s - 1$, from the orthogonality of P_n with respect to μ we deduce

$$\int_{\mathbb{D}} \phi(x) P'_n(x) Q'_j(x) d\mu = 0, \quad \text{for } 0 \leqslant j \leqslant n - s - 1.$$

This means that the polynomial $\phi P'_n$ is orthogonal to \mathbb{P}_{n-s-2} with respect to the measure μ , i.e.,

$$\phi(x)P'_n(x) = \sum_{j=n-s-1}^{n-1+s'} b_{n,j}P_j(x).$$
 (8)

On the other hand, from (7),

$$0 \neq \int_{\mathbb{D}} P_n(x) [\phi(x) Q_{n-s} + \lambda \phi'(x) Q'_{n-s}(x)] d\mu + \lambda \int_{\mathbb{D}} \phi(x) P'_n(x) Q'_{n-s}(x) d\mu.$$

The degree of the polynomial inside the brackets is $n - s + s' \le n$.

If s' < s, then we get

$$\int_{\mathbb{R}} \phi(x) P'_n(x) Q'_{n-s}(x) d\mu \neq 0.$$

Taking into account (8) and the fact that

$$Q'_{n-s}(x) = (n-s)P_{n-s-1}(x) + \text{lower degree terms},$$
(9)

we get

$$\int_{\mathbb{R}} \phi(x) P'_n(x) P_{n-s-1}(x) d\mu \neq 0,$$

i.e., in (8) $b_{n,n-s-1} \neq 0$.

Now, if s' = s,

$$0 \neq a \int_{\mathbb{R}} P_n^2(x) d\mu + \lambda \int_{\mathbb{R}} \phi(x) P_n'(x) Q_{n-s}'(x) d\mu,$$

where a is the leading coefficient of $\phi(x)$. Again, from (8) and (9), we get

$$0 \neq a \int_{\mathbb{R}} P_n^2(x) \, d\mu + \lambda (n-s) b_{n,n-s-1} \int_{\mathbb{R}} P_{n-s-1}^2(x) \, d\mu.$$

In other words, (7) becomes

$$\alpha_{n,n-s}(Q_{n-s},Q_{n-s})_S = a \int_{\mathbb{R}} P_n^2(x) d\mu + \lambda(n-s)b_{n,n-s-1} \int_{\mathbb{R}} P_{n-s-1}^2(x) d\mu.$$

Thus, $b_{n,n-s-1} \neq 0$ if and only if

$$\alpha_{n,n-s}(Q_{n-s},Q_{n-s})_S \neq a \int_{\mathbb{D}} P_n^2(x) d\mu.$$

Finally, we have $(u, \phi(x)P'_n(x)) = 0$, for $n \ge s + 2$, and then we get $(\phi(x)u, P'_n(x)) = 0$, for $n \ge s + 2$, i.e., $(D(\phi u), P_n(x)) = 0$, for $n \ge s + 2$. Thus

$$D(\phi u) = \sum_{k=0}^{s+1} \beta_k \frac{P_k(x)u}{(u, P_k^2(x))},$$

where

$$\begin{split} \beta_k &= (D(\phi u), P_k(x)) = -(\phi u, P'_k(x)) = -(u, \phi P'_k(x)) \\ &= -\left(u, \sum_{j=0}^{s'+k-1} b_{k,j} P_j(x)\right) = -b_{k,0}. \end{split}$$

Then,

$$D(\phi u) = -\sum_{k=0}^{s+1} \frac{b_{k,0} P_k(x)}{(u, P_k^2(x))} u = \psi u,$$

where

$$\psi(x) = -\sum_{k=0}^{s+1} \frac{b_{k,0} P_k(x)}{(u, P_k^2(x))} = -\sum_{k=0}^{s+1} \frac{(u, \phi(t) P_k'(t) P_k(x))}{(u, P_k^2(t))}$$
$$= -(u, \phi(t) K_{s+1}^{(1,0)}(t, x)).$$

Here,

$$K_n(t,x) = \sum_{j=0}^{n} \frac{P_k(t)P_k(x)}{(u, P_k^2(x))}$$

is the *n*th kernel polynomial associated with the sequence (P_n) and we denote $K_n^{(1,0)}(t,x) = \frac{\partial}{\partial t} K_n(t,x)$.

Notice that $\deg(\phi) = s'$ and $1 \leqslant \deg(\psi) \leqslant s + 1$. According to the definition of the order of a semiclassical linear functional (see [9]), the order of u is, at most, $\max\{s'-2,s\}$. \square

The simplest case corresponds to $\phi(x) = 1$. In this situation

$$Du = -(u, K_{s+1}^{(1,0)}(t, x))u$$
, with $s \ge 0$.

If u is induced by an absolutely continuous measure μ , i.e., $d\mu(x) = w(x) dx$, then $w'(x) = -\psi(x)w(x)$ and $w(x) = \exp(-\int \psi(x) dx)$. Thus, we obtain a Freud weight.

3. The Freud weight e^{-x^4} and the Sobolev orthogonal polynomials

Let $\{P_n\}$ be the sequence of monic polynomials orthogonal with respect to the weight function $d\mu = e^{-x^4} dx$ supported on \mathbb{R} . As we mentioned in Section 1, they have been considered by Nevai [14,15]. These polynomials satisfy a three-term recurrence relation

$$xP_n(x) = P_{n+1}(x) + c_n P_{n-1}(x), \quad n \ge 1,$$

with initial conditions $P_0(x) = 1$ and $P_1(x) = x$, where the parameters c_n satisfy a non-linear recurrence relation (see [4])

$$n = 4c_n(c_{n+1} + c_n + c_{n-1}), \quad n \geqslant 1, \tag{10}$$

with $c_0 = 0$ and $c_1 = \Gamma(3/4)/\Gamma(1/4)$.

On the other hand, from (8) with s' = 0 ($\phi \equiv 1$) and $\int \psi(x) dx = x^4$, i.e., $\psi(x) = 4x^3$ (s = 2), the polynomials $\{P_n\}$ satisfy a structure relation

$$P'_{n}(x) = nP_{n-1}(x) + d_{n}P_{n-3}(x), \quad n \geqslant 3,$$

where

$$d_{n} = \frac{\int_{-\infty}^{\infty} P'_{n}(x) P_{n-3}(x) e^{-x^{4}} dx}{\int_{-\infty}^{\infty} P_{n-3}^{2}(x) e^{-x^{4}} dx} = \frac{-\int_{-\infty}^{\infty} P_{n}(x) [P'_{n-3}(x) - 4x^{3} P_{n-3}(x)] e^{-x^{4}} dx}{\int_{-\infty}^{\infty} P_{n-3}^{2}(x) e^{-x^{4}} dx}$$
$$= \frac{4\int_{-\infty}^{\infty} P_{n}^{2}(x) e^{-x^{4}} dx}{\int_{-\infty}^{\infty} P_{n-3}^{2}(x) e^{-x^{4}} dx} = 4c_{n}c_{n-1}c_{n-2}, \quad n \geqslant 3.$$

We consider the Sobolev inner product

$$(p,q)_S = \int_{-\infty}^{\infty} p(x)q(x)e^{-x^4} dx + \lambda \int_{-\infty}^{\infty} p'(x)q'(x)e^{-x^4} dx, \quad p,q \in \mathbb{P},$$

and let $\{Q_n\}$ be the corresponding sequence of monic orthogonal polynomials. Taking into account Proposition 1 as well as the fact that $Q_n(-x) = (-1)^n Q_n(x)$ we get

Proposition 2. The polynomial $\{P_n\}$ and $\{Q_n\}$ are related by

$$P_n(x) = Q_n(x) + \lambda_{n-2}Q_{n-2}(x), \quad n \geqslant 3.$$
 (11)

Proof. From

$$P_n(x) = Q_n(x) + \sum_{j=0}^{n-2} \lambda_{n,j} Q_j(x),$$

for $0 \le j \le n-2$, we get

$$\lambda_{n,j} = \frac{(P_n(x), Q_j(x))_S}{||Q_j||_S^2} = \frac{\lambda \int_{-\infty}^{\infty} P'_n(x) Q'_j(x) e^{-x^4} dx}{||Q_j||_S^2}$$
$$= \frac{\lambda \int_{-\infty}^{\infty} 4P_n(x) x^3 Q'_j(x) e^{-x^4} dx}{||Q_j||_S^2}.$$

This expression vanishes for j < n-2. For j = n-2 we get

$$\lambda_{n,n-2} := \lambda_{n-2} = 4\lambda(n-2) \frac{\int_{-\infty}^{\infty} P_n^2(x) e^{-x^4} dx}{\|Q_{n-2}\|_{S}^2} > 0. \qquad \Box$$
 (12)

On the other hand, we can observe that $Q_i(x) = P_i(x)$, i = 0, 1, 2.

Notice that

$$||P_n||_S^2 = ||Q_n||_S^2 + \lambda_{n-2}^2 ||Q_{n-2}||_S^2$$

with

$$||P_n||_S^2 = \int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx + \lambda \int_{-\infty}^{\infty} (P_n'(x))^2 e^{-x^4} dx = \int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx + \lambda \left[n^2 \int_{-\infty}^{\infty} P_{n-1}^2(x)e^{-x^4} dx + d_n^2 \int_{-\infty}^{\infty} P_{n-3}^2(x)e^{-x^4} dx \right],$$
(13)

and using (12) we have

$$||Q_n||_S^2 + \lambda_{n-2}^2 ||Q_{n-2}||_S^2$$

$$= 4\lambda \left(\frac{n \int_{-\infty}^{\infty} P_{n+2}^2(x) e^{-x^4} dx}{\lambda_n} + (n-2) \lambda_{n-2} \int_{-\infty}^{\infty} P_n^2(x) e^{-x^4} dx \right).$$
 (14)

Gathering (13) and (14) we obtain

$$\int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx + \lambda \left(n^2 \int_{-\infty}^{\infty} P_{n-1}^2(x)e^{-x^4} dx + d_n^2 \int_{-\infty}^{\infty} P_{n-3}^2(x)e^{-x^4} dx \right)$$

$$= 4\lambda \left(\frac{n}{\lambda_n} \int_{-\infty}^{\infty} P_{n+2}^2(x)e^{-x^4} dx + (n-2)\lambda_{n-2} \int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx \right).$$

Then, dividing by $\int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx$ we get

$$1 + \lambda \left(\frac{n^2}{c_n} + \frac{d_n^2}{c_n c_{n-1} c_{n-2}} \right) = 4\lambda \left(\frac{n}{\lambda_n} c_{n+2} c_{n+1} + (n-2) \lambda_{n-2} \right),$$

or, equivalently,

$$1 + \lambda \left(\frac{n^2}{c_n} + 16c_n c_{n-1} c_{n-2}\right) = 4\lambda \left(\frac{n}{\lambda_n} c_{n+2} c_{n+1} + (n-2)\lambda_{n-2}\right), \quad n \geqslant 3$$

Finally,

$$\frac{1}{\lambda} + \frac{n^2}{c_n} + 16c_n c_{n-1} c_{n-2} = 4\left(\frac{n}{\lambda_n} c_{n+2} c_{n+1} + (n-2)\lambda_{n-2}\right), \quad n \geqslant 3,$$
(15)

with initial conditions

$$\lambda_1 = \frac{4c_3c_2c_1}{1 + c_1\lambda^{-1}},$$

$$\lambda_2 = \frac{8c_4c_3c_2}{4 + c_2\lambda^{-1}}.$$

Notice that for n = 2m, an even non-negative integer number, we can assume

$$\lambda_{2m} = \frac{q_{m-1}(\lambda^{-1})}{q_m(\lambda^{-1})}, \quad m \geqslant 1,$$

where q_m is a polynomial of degree m. Thus, for $m \ge 1$, (15) becomes

$$c_{2m+2}c_{2m+1}\frac{8mq_m(\lambda^{-1})}{q_{m-1}(\lambda^{-1})} + 4(2m-2)\frac{q_{m-2}(\lambda^{-1})}{q_{m-1}(\lambda^{-1})} = \lambda^{-1} + \frac{4m^2}{c_{2m}} + 16c_{2m}c_{2m-1}c_{2m-2},$$

or, equivalently,

$$q_{m}(\lambda^{-1}) = \frac{q_{m-1}(\lambda^{-1})}{8mc_{2m+2}c_{2m+1}} \left(\lambda^{-1} + \frac{4m^{2}}{c_{2m}} + 16c_{2m}c_{2m-1}c_{2m-2}\right) - \left(\frac{m-1}{m}\right) \frac{q_{m-2}(\lambda^{-1})}{c_{2m+2}c_{2m+1}}.$$

If \tilde{q}_m denotes the monic polynomial associated with q_m , i.e., $q_m = s_m \tilde{q}_m$, we get

$$\tilde{q}_m(\lambda^{-1}) = \left(\lambda^{-1} + \frac{4m^2}{c_{2m}} + 16c_{2m}c_{2m-1}c_{2m-2}\right)\tilde{q}_{m-1}(\lambda^{-1}) - 64(m-1)^2c_{2m}c_{2m-1}\tilde{q}_{m-2}(\lambda^{-1}), \quad m \ge 2,$$

with initial conditions

$$\tilde{q}_0(\lambda^{-1}) = 1$$
 and $\tilde{q}_1(\lambda^{-1}) = \lambda^{-1} + \frac{4}{c_2}$.

On the other hand, for n = 2m - 1, an odd nonnegative integer number, we can assume

$$\lambda_{2m-1} = \frac{r_{m-1}(\lambda^{-1})}{r_m(\lambda^{-1})}, \quad m \geqslant 1,$$

where r_m is a polynomial of degree m. Thus, for $m \ge 2$, (15) becomes

$$c_{2m+1}c_{2m}\frac{4(2m-1)r_m(\lambda^{-1})}{r_{m-1}(\lambda^{-1})} + 4(2m-3)\frac{r_{m-2}(\lambda^{-1})}{r_{m-1}(\lambda^{-1})} = \lambda^{-1} + \frac{(2m-1)^2}{c_{2m-1}} + 16c_{2m-1}c_{2m-2}c_{2m-3},$$

or, equivalently,

$$r_{m}(\lambda^{-1}) = \frac{r_{m-1}(\lambda^{-1})}{4(2m-1)c_{2m+1}c_{2m}} \left(\lambda^{-1} + \frac{(2m-1)^{2}}{c_{2m-1}} + 16c_{2m-1}c_{2m-2}c_{2m-3}\right) - \frac{2m-3}{(2m-1)c_{2m+1}c_{2m}} r_{m-2}(\lambda^{-1}).$$

If $r_m = t_m \tilde{r}_m$ where \tilde{r}_m denotes the monic polynomial associated with r_m , then we get

$$\tilde{r}_{m}(\lambda^{-1}) = \left(\lambda^{-1} + \frac{(2m-1)^{2}}{c_{2m-1}} + 16c_{2m-1}c_{2m-2}c_{2m-3}\right)\tilde{r}_{m-1}(\lambda^{-1})$$
$$-16(2m-3)^{2}c_{2m-1}c_{2m-2}\tilde{r}_{m-2}(\lambda^{-1}), \quad m \ge 2,$$

with initial conditions

$$\tilde{r}_0(\lambda^{-1}) = 1$$
 and $\tilde{r}_1(\lambda^{-1}) = \lambda^{-1} + \frac{1}{c_1}$.

As a conclusion, $\{\tilde{q}_m\}$ and $\{\tilde{r}_m\}$ are sequences of monic orthogonal polynomials.

4. Asymptotics of Q_n

First, we establish the asymptotic behavior of the sequence $\{\lambda_n\}$ which appears in (11).

Proposition 3. For the sequence $\{\lambda_n/\sqrt{n}\}$ we get the upper bound

$$\frac{\lambda_n}{\sqrt{n}} < \frac{\sqrt{5}}{3}, \quad n \geqslant 1.$$

Furthermore, the sequence $\{\lambda_n/\sqrt{n}\}$ is convergent and

$$\lim_{n \to \infty} \frac{\lambda_n}{\sqrt{n}} = \frac{1}{6\sqrt{3}}.$$
 (16)

Proof. By the extremal property of $||Q_n||_S^2$ we have

$$||Q_n||_S^2 \geqslant \int_{-\infty}^{\infty} P_n^2(x)e^{-x^4} dx + \lambda n^2 \int_{-\infty}^{\infty} P_{n-1}^2(x)e^{-x^4} dx.$$

Thus, for $n \ge 1$, from (11)

$$\frac{\lambda_n}{\sqrt{n}} = 4\lambda \sqrt{n} \frac{\int_{-\infty}^{\infty} P_{n+2}^2(x) e^{-x^4} dx}{||Q_n||_S^2}$$

$$\leq 4\lambda \sqrt{n} \frac{\int_{-\infty}^{\infty} P_{n+2}^2(x) e^{-x^4} dx}{\int_{-\infty}^{\infty} P_n^2(x) e^{-x^4} dx + \lambda n^2 \int_{-\infty}^{\infty} P_{n-1}^2(x) e^{-x^4} dx}$$

$$= 4\lambda \sqrt{n} \frac{c_{n+2} c_{n+1} c_n}{c_n + \lambda n^2}.$$
(17)

From the recurrence relation (10) we have, for $n \ge 2$,

$$4c_n^2 = n - 4c_n(c_{n+1} + c_{n-1}) < n \Rightarrow c_n < \frac{\sqrt{n}}{2},$$

but simple computations show that the above inequality also holds for n = 1, that is,

$$c_n < \frac{\sqrt{n}}{2}, \quad n \geqslant 1. \tag{18}$$

Now, using this inequality in (10) we obtain

$$\frac{n}{4} = c_n(c_{n+1} + c_n + c_{n-1}) < \frac{3}{2}\sqrt{n+1}c_n$$

and, then $c_n > \frac{n\sqrt{n+1}}{6(n+1)}$, for $n \ge 2$, but again simple computations prove that this inequality is true for n = 1, and, therefore,

$$c_n > \frac{n}{6\sqrt{n+1}}, \quad n \geqslant 1. \tag{19}$$

We use relations (18) and (19) in (17) obtaining, for $n \ge 2$,

$$\frac{\lambda_n}{\sqrt{n}} < \frac{\lambda \sqrt{(n+2)(n+1)}}{\frac{1}{2\sqrt{n+1}} + 2\lambda n} < \frac{\sqrt{(n+2)(n+1)}}{2n} \le \frac{\sqrt{5}}{3}, \quad n \ge 3,$$

and straightforward computations in (12) show that this inequality holds for n = 1, 2. Thus,

$$\frac{\lambda_n}{\sqrt{n}} < \frac{\sqrt{5}}{3} < 1, \quad n \geqslant 1. \tag{20}$$

On the other hand, relation (15) can be rewritten as

$$\lambda_n = \frac{4nc_{n+2}c_{n+1}}{\frac{1}{2} + \frac{n^2}{c_n} + 16c_nc_{n-1}c_{n-2} - 4(n-2)\lambda_{n-2}}, \quad n \geqslant 3$$

and from here we get for $n \ge 3$,

$$\frac{\lambda_n}{\sqrt{n}} = \frac{1}{\frac{1}{4\lambda\sqrt{n}c_{n+2}c_{n+1}} + \frac{1}{4}(\frac{n^{3/2}}{c_nc_{n+1}c_{n+2}} + \frac{16c_nc_{n-1}c_{n-2}}{\sqrt{n}c_{n+1}c_{n+2}}) - \frac{n-2}{c_{n+1}c_{n+2}}\sqrt{\frac{n-2}{n}}\frac{\lambda_{n-2}}{\sqrt{n-2}}}.$$
(21)

Denoting

$$B(n) = \frac{1}{4\lambda\sqrt{n}c_{n+2}c_{n+1}} + \frac{1}{4}\left(\frac{n^{3/2}}{c_nc_{n+1}c_{n+2}} + \frac{16c_nc_{n-1}c_{n-2}}{\sqrt{n}c_{n+1}c_{n+2}}\right),\tag{22}$$

$$C(n) = \frac{n-2}{c_{n+1}c_{n+2}}\sqrt{\frac{n-2}{n}},\tag{23}$$

then (21) becomes

$$\frac{\lambda_n}{\sqrt{n}} = \frac{1}{B(n) - C(n)\frac{\lambda_{n-2}}{\sqrt{n-2}}}.$$
(24)

Taking into account that in [4] an asymptotic expansion of c_n was established, in particular

$$\lim_{n \to \infty} \frac{c_n}{\sqrt{n}} = \frac{1}{2\sqrt{3}},\tag{25}$$

using (25) we get

$$\lim_{n \to \infty} B(n) = \frac{20\sqrt{3}}{3}, \quad \lim_{n \to \infty} C(n) = 12.$$
 (26)

Therefore, if the sequence $\{\lambda_n/\sqrt{n}\}$ converges, its limit r must satisfy the equation $r=1/(20\sqrt{3}/3-12r)$, i.e., either $r=1/6\sqrt{3}$ or $r=\sqrt{3}/2$. But, from (20), it is deduced that the limit of $\{\lambda_n/\sqrt{n}\}$, if it exists, is $1/6\sqrt{3}$. Then, to conclude the proof of this Proposition it only remains to prove that $\{\lambda_n/\sqrt{n}\}$ converges.

If $r = 1/6\sqrt{3}$ and $\theta = \frac{\sqrt{5}}{3}$, then, from (24), we have

$$\left| \frac{\lambda_n}{\sqrt{n}} - r \right| = \frac{\left| 1 - rB(n) + rC(n) \frac{\lambda_{n-2}}{\sqrt{n-2}} - r^2C(n) + r^2C(n) \right|}{B(n) - C(n) \frac{\lambda_{n-2}}{\sqrt{n-2}}}.$$
 (27)

On the other hand, using inequality (20) for the sequence $\frac{\lambda_n}{\sqrt{n}}$, we have $C(n)\frac{\lambda_{n-2}}{\sqrt{n-2}} < \theta C(n)$ and so, for *n* large enough,

$$B(n) - C(n) \frac{\lambda_{n-2}}{\sqrt{n-2}} > B(n) - \theta C(n) > 0.$$

From here we can give a bound for (27), i.e., for n large enough,

$$\left| \frac{\lambda_n}{\sqrt{n}} - r \right| < \frac{|1 - rB(n) + r C(n)(\frac{\lambda_{n-2}}{\sqrt{n-2}} - r) + r^2 C(n)|}{B(n) - \theta C(n)}$$

$$\leq \frac{|1 - rB(n) + r^2 C(n)|}{B(n) - \theta C(n)} + \frac{rC(n)}{B(n) - \theta C(n)} \left| \frac{\lambda_{n-2}}{\sqrt{n-2}} - r \right|.$$

Now, taking into account the limits of the sequences B(n) and C(n) given in (26), we obtain

$$\limsup_{n \to \infty} \left| \frac{\lambda_n}{\sqrt{n}} - r \right| \leqslant \frac{2/\sqrt{3}}{\frac{20}{\sqrt{3}} - 4\sqrt{5}} \limsup_{n \to \infty} \left| \frac{\lambda_{n-2}}{\sqrt{n-2}} - r \right|$$

$$= \frac{1}{10 - 2\sqrt{15}} \limsup_{n \to \infty} \left| \frac{\lambda_{n-2}}{\sqrt{n-2}} - r \right|,$$

where

$$\frac{1}{10-2\sqrt{15}} < \frac{1}{2}$$

and, therefore, we can conclude that the sequence $\{\lambda_n/\sqrt{n}\}$ is convergent and its limit is $r = 1/(6\sqrt{3})$. \square

We want to compare the asymptotic behavior of Q_n and P_n in the complex plane, more exactly, in $\mathbb{C}\backslash\mathbb{R}$. We get the following result:

Theorem 2. The asymptotic behavior

$$\lim_{n \to \infty} \frac{Q_n(x)}{P_n(x)} = \frac{3}{2} \tag{28}$$

holds uniformly on compact subsets of $\mathbb{C}\backslash\mathbb{R}$.

Proof. We consider the orthonormal polynomials p_n with respect to the inner product $\int_{-\infty}^{\infty} f(x)g(x)e^{-x^4} dx$. In [5] López and Rakhmanov give the strong asymptotics of p_n , i.e., it holds uniformly on compact subsets of $\mathbb{C}\backslash\mathbb{R}$,

$$\lim_{n \to \infty} \frac{p_n(x)}{D_n(x)(\varphi(x/x_n))^{n+1/2}} = \frac{1}{\sqrt{2\pi}},$$

where $D_n(x)$ is the Szegő's function for the weight e^{-x^4} on the segment $[-x_n, x_n]$, i.e.,

$$D_n(x) = \exp\left\{\frac{\sqrt{x^2 - x_n^2}}{2\pi} \int_{-x_n}^{x_n} \frac{t^4}{(x - t)\sqrt{x_n^2 - t^2}} dt\right\},\,$$

being $x_n = (\frac{4n}{3})^{1/4}$ and $\varphi(x) = x + \sqrt{x^2 - 1}$ is the conformal mapping of $\mathbb{C}\setminus[-1, 1]$ onto the exterior of the closed unit disk.

Thus, we can deduce that

$$\lim_{n\to\infty}\frac{p_n(x)}{p_{n+2}(x)}=-1,$$

uniformly on compact subsets of $\mathbb{C}\backslash\mathbb{R}$. Then, for the monic polynomials P_n we get

$$\lim_{n \to \infty} \frac{\sqrt{n} P_n(x)}{P_{n+2}(x)} = -2\sqrt{3},\tag{29}$$

uniformly on compact subsets of $\mathbb{C}\backslash\mathbb{R}$. Dividing relation (11) by $P_n(x)$ we obtain

$$\frac{Q_n(x)}{P_n(x)} = 1 - \lambda_{n-2} \frac{P_{n-2}(x)}{P_n(x)} \frac{Q_{n-2}(x)}{P_{n-2}(x)},$$

where, using (16) and (29), we have

$$\lim_{n \to \infty} \lambda_{n-2} \frac{P_{n-2}(x)}{P_n(x)} = -\frac{1}{3},$$

uniformly on compact subsets of $\mathbb{C}\backslash\mathbb{R}$. Now, standard arguments allow us to conclude that the sequence $\{Q_n/P_n\}$ is convergent and its limit is the solution of the equation s = 1 + s/3, that is, s = 3/2. \square

From this theorem we deduce that the Sobolev polynomials $\{Q_n\}$ have the same asymptotic behavior (up to multiplicative constant factors) as $\{P_n\}$ in $\mathbb{C}\backslash\mathbb{R}$. This occurs in other cases when the measures μ_0 and μ_1 involved in the Sobolev inner product (1) with N=1 have unbounded support (see [1,6]) but this is not the case when the measures have compact support (see, for example, [11] or [12]). Three natural questions arise. The first one is why does it occur? The second one is when does it occur? Finally, can we give a more complete description of the asymptotic behavior of the polynomials Q_n ? The answer to the first and second questions is yet open for us, but we can obtain better information about the asymptotics of Q_n if we scale the variable x in a convenient way, i.e., if we look for the exterior Plancherel–Rotach-type asymptotics for Q_n . We have the following result:

Theorem 3. The asymptotic behavior

$$\lim_{n \to \infty} \frac{Q_n(\sqrt[4]{n}x)}{P_n(\sqrt[4]{n}x)} = \frac{3\varphi^2\left(\sqrt[4]{\frac{3}{4}}x\right)}{3\varphi^2\left(\sqrt[4]{\frac{3}{4}}x\right) + 1}$$

$$(30)$$

holds uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$, where $\varphi(x)=x+\sqrt{x^2-1}$ with $\sqrt{x^2-1}>0$ if x>1, i.e., the conformal mapping of $\mathbb{C}\setminus[-1,1]$ onto the exterior of the closed unit disk.

Proof. It is well-known (see [16]) that from the three-term recurrence relation

$$xp_n(x) = a_{n+1}p_{n+1}(x) + a_np_{n-1}(x), \quad n \ge 1,$$

we can obtain asymptotic properties of the orthonormal polynomials p_n . Indeed, as

$$\lim_{n\to\infty} \frac{a_n}{\sqrt[4]{n+j}} = \frac{1}{\sqrt[4]{12}}, \quad \text{for a } j \in \mathbb{R} \text{ fixed},$$

we deduce (see [16])

$$\lim_{n \to \infty} \frac{p_{n-1}(\sqrt[4]{n+j}x)}{p_n(\sqrt[4]{n+j}x)} = \frac{1}{\varphi(\sqrt[4]{\frac{3}{4}}x)}, \quad j \text{ fixed},$$

uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$. Then, for the monic polynomial P_n we have

$$\lim_{n \to \infty} \sqrt[4]{n} \frac{P_{n-1}(\sqrt[4]{n+j} x)}{P_n(\sqrt[4]{n+j} x)} = \frac{\sqrt[4]{12}}{\varphi(\sqrt[4]{\frac{3}{4}} x)}, \quad j \text{ fixed},$$
 (31)

uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3}, \sqrt[4]{4/3}]$. Introducing the change of variable $x \to \sqrt[4]{nx}$ in (11) and using this relation in a recursive way, we get

$$Q_n(\sqrt[4]{n} x) = \sum_{j=0}^{[(n-1)/2]} (-1)^j b_{2j}^{(n)} P_{n-2j}(\sqrt[4]{n} x), \quad n \geqslant 3,$$

with $b_0^{(n)} = 1$, $b_{2j}^{(n)} = \prod_{i=1}^{j} \lambda_{n-2i}$, and [a] denotes the integer part of a. Then, dividing by $P_n(\sqrt[4]{n} x)$ we obtain

$$\frac{Q_n(\sqrt[4]{n} x)}{P_n(\sqrt[4]{n} x)} = \sum_{j=0}^{[(n-1)/2]} (-1)^j b_{2j}^{(n)} \frac{P_{n-2j}(\sqrt[4]{n} x)}{P_n(\sqrt[4]{n} x)}
= \sum_{i=0}^{[(n-1)/2]} (-1)^j \frac{b_{2j}^{(n)}}{\prod_{i=1}^j \sqrt{n-2i}} \frac{\prod_{i=1}^j \sqrt{n-2i} P_{n-2j}(\sqrt[4]{n} x)}{P_n(\sqrt[4]{n} x)},$$

where an empty product is equal to 1. Now, we analyze the asymptotic behavior of the factors in the above sum. If we use (16) in Proposition 3 and (31), then

$$\lim_{n \to \infty} (-1)^j \frac{b_{2j}^{(n)}}{\prod_{i=1}^j \sqrt{n-2i}} = (-1)^j \prod_{i=1}^j \frac{\lambda_{n-2i}}{\sqrt{n-2i}} = \left(\frac{-1}{6\sqrt{3}}\right)^j, \quad j \text{ fixed},$$

$$\lim_{n \to \infty} \prod_{i=1}^{j} \sqrt{n - 2i} \frac{P_{n-2j}(\sqrt[4]{n} x)}{P_n(\sqrt[4]{n} x)}$$

$$= \left(\frac{2\sqrt{3}}{\varphi^2\left(\sqrt[4]{\frac{3}{4}}x\right)}\right)^j, \quad j \text{ fixed.}$$
(32)

This last limit holds uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$. Gathering the above limits we get

$$\lim_{n \to \infty} (-1)^{j} b_{2j}^{(n)} \frac{P_{n-2j}(\sqrt[4]{n} x)}{P_{n}(\sqrt[4]{n} x)} = \left(\frac{-1}{3 \varphi^{2}(\sqrt[4]{\frac{3}{4}} x)}\right)^{j}, \tag{33}$$

uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$.

On the other hand, the upper bound of the sequence $\{\lambda_n/\sqrt{n}\}$ obtained in Proposition 3 together with the limit relation (32) allow us to give a uniform bound for $(-1)^j b_{2j}^{(n)} P_{n-2j}(\sqrt[4]{n}x)/P_n(\sqrt[4]{n}x)$ on $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$, that is, for n large enough and $0 \le j \le \lceil (n-1)/2 \rceil$,

$$\left| (-1)^{j} b_{2j}^{(n)} \frac{P_{n-2j}(\sqrt[4]{n} x)}{P_{n}(\sqrt[4]{n} x)} \right| \leq K \theta^{j},$$

where

$$\theta = \frac{\sqrt{5}}{3} < 1$$

and K is a constant. Therefore, we have a majorant for $Q_n(\sqrt[4]{n} x)/P_n(\sqrt[4]{n} x)$ with $x \in \mathbb{C} \setminus [-\sqrt[4]{4/3}, \sqrt[4]{4/3}]$. From Lebesgue's dominated convergence theorem together with (33) we get

$$\lim_{n \to \infty} \frac{Q_n(\sqrt[4]{n} x)}{P_n(\sqrt[4]{n} x)} = \sum_{j=0}^{\infty} \left(\frac{-1}{3\varphi^2(\sqrt[4]{\frac{3}{4}} x)} \right)^j = \frac{3\varphi^2(\sqrt[4]{\frac{3}{4}} x)}{3\varphi^2(\sqrt[4]{\frac{3}{4}} x) + 1},$$

uniformly on compact subsets of $\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$ and thus the statement of our theorem follows. Note that $\left|-1/\left(3\varphi^2\left(\sqrt[4]{\frac{3}{4}}x\right)\right)\right|<1$ when $x\in\mathbb{C}\setminus[-\sqrt[4]{4/3},\sqrt[4]{4/3}]$. \square

Acknowledgments

We thank Professors Jeff Geronimo and Arno Kuijlaars for their suggestions which have improved the presentation of the paper.

References

- [1] M. Alfaro, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, M.L. Rezola, Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs, J. Comput. Appl. Math. 133 (2001) 141–150.
- [2] W.D. Evans, L.L. Littlejohn, F. Marcellán, C. Markett, A. Ronveaux, On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal. 26 (2) (1995) 446–467.

- [3] A. Iserles, P.E. Koch, S.P. Nørsett, J.M. Sanz–Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (2) (1991) 151–175.
- [4] J.S. Lew, D.A. Quarles Jr., Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory 38 (1983) 357–379.
- [5] G. López, E.A. Rakhmanov, Rational approximations, orthogonal polynomials and equilibrium distributions, in: M. Alfaro, et al., (Eds.), Orthogonal Polynomials and their Applications, Lectures Notes in Mathematics, Vol. 1329, Springer, Berlin, 1988, pp. 125–157.
- [6] F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory 110 (2001) 54-73.
- [7] F. Marcellán, T.E. Pérez, M.A. Piñar, Gegenbauer-Sobolev orthogonal polynomials, in: A. Cuyt (Ed.), Non-linear Numerical Methods and Rational Approximation, Kluwer Academic Publishers Proceedings, Dordrecht, 1994, pp. 71–82.
- [8] F. Marcellán, T.E. Pérez, M.A. Piñar, Laguerre-Sobolev orthogonal polynomials, J. Comput. Appl. Math. 71 (1996) 245–265.
- [9] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: C. Brezinski et al. (Eds.), Orthogonal polynomials and their Applications; IMACS Ann. Comput. Appl. Math. 19 (1991) 95–130.
- [10] A. Martínez-Finkelshtein, Analytic aspects of Sobolev orthogonality revisited, J. Comput. Appl. Math. 127 (1-2) (2001) 255-266.
- [11] A. Martínez-Finkelshtein, J.J. Moreno-Balcázar, Asymptotics of Sobolev orthogonal polynomials for a Jacobi weight, Methods Appl. Anal. 4 (4) (1997) 430–437.
- [12] A. Martínez-Finkelshtein, J.J. Moreno-Balcázar, T.E. Pérez, M.A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures, J. Approx. Theory 92 (1998) 280–293.
- [13] H.G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 (3) (1997) 321–343.
- [14] P. Nevai, Orthogonal polynomials associated with $\exp(-x^4)$, Proc. Canad. Math. Soc. 3 (1983) 263–285.
- [15] P. Nevai, Asymptotics for orthogonal polynomials associated with $\exp(-x^4)$, SIAM J. Math. Anal. 15 (1984) 1177–1187.
- [16] W. Van Assche, Asymptotics for Orthogonal Polynomials, in: Lecture Notes in Mathematics, Vol. 1265, Springer, Berlin, 1987.