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Abstract

In this paper we consider a Sobolev inner product

(rr0)s = [ fadus 2 [ 19 du (+)

and we characterize the measures p for which there exists an algebraic relation between the
polynomials, {P,}, orthogonal with respect to the measure u and the polynomials, {Q,},
orthogonal with respect to (x), such that the number of involved terms does not depend on the
degree of the polynomials. Thus, we reach in a natural way the measures associated with a

Freud weight. In particular, we study the case du = e dx supported on the full real axis and
we analyze the connection between the so-called Nevai polynomials (associated with the Freud
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weight e*XA) and the Sobolev orthogonal polynomials Q,. Finally, we obtain some asymptotics
for {Q,}. More precisely, we give the relative asymptotics {Q,(x)/P,(x)} on compact subsets
of C\R as well as the outer Plancherel-Rotach-type asymptotics {Q,(v/nx)/P,(+/nx)} on
compact subsets of C\[—a, a] being a = \"/m

© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The study of algebraic and analytic properties of polynomials orthogonal with
respect to an inner product

N
(pa)s=Y / 2ep® ()g® (x) g (x), (1)
k=0 /R

where (uk)ﬁzo are measures supported on subsets of the real line and p, ¢ are
polynomials with real coefficients has attracted the interest of many researchers in
the last years (see [10]). Despite the interest of this case (1), the approach was started
for N = 1. In such a situation several examples were very carefully analyzed from an
algebraic point of view. The first one (see [7]) is related to Gegenbauer measures, i.c.,
duy(x) =du(x) = (1 = xz)“}([,lﬁl] dx, o> —1 which represents a situation of
measures with compact support. A second one, for unbounded support, is analyzed
in [8] when duy(x) =du(x) =x"¢ g+ dx, o> — 1. In both cases, the basic
differences with the so-called standard case (N = 0) are emphasized. In particular,
the three-term recurrence relation for the orthogonal polynomials fails and, as a
consequence, the study of algebraic and analytic properties of the corresponding
sequences of orthogonal polynomials needs different tools.

In a more general framework, if u, or p; are classical measures (Jacobi, Laguerre,
Hermite), then the basic idea is to consider a companion measure which satisfies the
so-called coherence condition or symmetric coherence for symmetric measures (see
[3]). The goal of coherence is the fact that we can establish a finite algebraic relation
between the orthogonal polynomials, {P,}, associated with p, and the orthogonal
polynomials, {Q,}, with respect to the inner product (1) for N = 1, the so-called
Sobolev orthogonal polynomials. This algebraic relation plays an important role in
the study of {Q,} since it allows to express the polynomials {Q,} in terms of the
standard polynomials {P,} and thus it is possible to carry out a study of {Q,} from
the algebraic, analytic and computational points of view. Notice that in [13] it was
proved that if (p, ;) is a coherent pair of measures, then one of them must be
classical and its companion is a perturbation of it.

If both measures y, and y; have unbounded support then, except for coherent
pairs, very few examples are known when p, and u, are non-classical measures with
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non-zero absolutely continuous part. However, in the bounded case, i.e., the
measures have compact support, quite a few things are known when both measures
are non-classical. For instance, a nice survey about asymptotics of Sobolev
orthogonal polynomials is [10]. Indeed, one of the aims of our contribution is to
analyze orthogonal polynomials for an inner product (1) when dp,(x) = du,(x) =
e Ir dx, an example of a non-classical measure. The sequence of standard
polynomials orthogonal with respect to such kind of measures has been introduced
by Nevai [14,15] in the framework of the so-called Freud measures. They belong to
the set of semiclassical measures, i.e., the linear functional u: P — R given by (u,p) =
fR p(x) du(x), where P is the linear space of polynomials with real coefficients is such
that there exist polynomials ¢,  with degy>1 and (see [9])

D(du) = yru. (2)

Indeed, Freud measures are defined by weight functions w(x) = ¢~* where P is a
monic polynomial of degree 2n.

For Sobolev inner products (1) with N = 1 and yy = p; = pu the following result is
proved in [2].

Proposition 1. If u is a semiclassical measure such that (2) holds, then there exists a
non-negative integer number s such that

n+s'

P)Pu(x) = D 0 Qj(x), o s #O, 3)

Jj=n—s

where deg ¢ = 5.

In what follows, we use the inner product
(p,q)s:/ﬂq{pqdu+i/Rp’q’du, 4>0, (4)

and we denote by {P,} the sequence of orthogonal polynomials associated with
u =y =ty and by {Q,} the sequence of orthogonal polynomials with respect to (4).

We are interested in a converse result of Proposition 1, i.e., if we consider an inner
product (4), such that (3) holds, then the goal is to know what information about the
measure u can be given. Indeed, we get

Theorem 1. Relation (3) holds if and only if the measure u is semiclassical.
Furthermore, the polynomials ¢, in (2) can explicitly be given.

In particular, if ¢ = 1 then pu is a Freud measure.

Our second step is to analyze orthogonal polynomials associated with the Sobolev
inner product (4) when du = e dx. In Section 3 we deduce the connection between
the sequences {P,} and {Q,}. In such a way we can obtain an explicit expression for
{0y} in terms of {P,}. From it we deduce in Section 4 the relative asymptotics of Q,



A. Cachafeiro et al. | Journal of Approximation Theory 125 (2003) 2641 29

with respect to P, as well as a Plancherel-Rotach-type asymptotics formula for Q,.
Here the scaling in the variable is needed.

2. Proof of Theorem 1

Let ¢ be a polynomial of degree s’ such that

POPAX) = 3 w0, n>s, (5)
Jj=n—s
with a,,_7#0 and s’ <s. From (5), we get
0= (¢(x)Pu(x), 0i(x))g, j=0,1,...,n—s5—1, (6)
0+# (d)(x)Pn(x)v ans(x))s = an,nfs(ansa ans)S' (7)
From (6),
0= [ GWPNQ) dut 2 [ (B06)P.() Q)(x)

= /RP( X)[$(x)Qj(x) + 2¢'(x) Qj(x)] d#+7u/R¢(X)P;(X)Q}(X) dp.

The degree of the polynomial inside the brackets is s’ + j and taking into account
that 0<j<n — s — 1, from the orthogonality of P, with respect to x we deduce

/qS )P (x)0i(x)du=0, for 0<j<n—s—1.

This means that the polynomial ¢P) is orthogonal to P,_,_, with respect to the
measure u, i.e.,

n—1+s

PP (x) = D bu Pilx). (8)

Jj=n—s—1

On the other hand, from (7),
0% [ PuS9)Qrec+ 28/ ()Q, () di+ 4 [ $(3)P,(5)Q) () di
R

The degree of the polynomial inside the brackets is n — s + ' <n.
If s’ <s, then we get

/R ()P, (x) Q) (x) du 0.

Taking into account (8) and the fact that
O _(x) = (n—s)P,_s_1(x) + lower degree terms, 9)

n—s
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we get

/R ()P (x) Py (x) du 20,

ie., in (8) by 51 #0.
Now, if §' = s,

0#a [ P duct 2 [ COPLQ, ) d
where « is the leading coefficient of ¢(x). Again, from (8) and (9), we get
0#a /R P2(x) dp+ 2(n — 8)bpp s /R P (x)du
In other words, (7) becomes
s Qs Qs = [ PO At il = baeocs [ P2 (3) e
Thus, b, ,—s—1#0 if and only if
n(Qrees Qs [ i) d.

Finally, we have (u,¢(x)P,(x)) =0, for n=s+2, and then we get (¢(x)u,
P (x)) =0, forn=s+2, ie., (D( u), P,(x)) =0, for n=s+ 2. Thus
541

Z ﬂk u P2 a
where

B = (D(¢u), Pr(x)) = —(¢u, P(x)) = —(u, p P (x))

§'+k—1
=— (u, > bk.,./P_/(x)> = —bro.
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is the nth kernel polynomial associated with the sequence (P,) and we denote
Ki(1,x) = 5K (1,).

Notice that deg (¢) = ¢ and 1<deg () <s+ 1. According to the definition of the
order of a semiclassical linear functional (see [9]), the order of u is, at most,
max{s' —2,s}. O

The simplest case corresponds to ¢(x) = 1. In this situation

Du = —(u, K§+l)( X))u, with s=0.

If u is induced by an absolutely continuous measure g, i.e., du(x) = w(x) dx, then
w'(x) = = (x)w(x) and w(x) = exp(— [(x) dx). Thus, we obtain a Freud weight.

3. The Freud weight ¢ and the Soboley orthogonal polynomials

Let {P,} be the sequence of monic polynomials orthogonal with respect to the

weight function du = e dx supported on R. As we mentioned in Section 1, they
have been considered by Nevai [14,15]. These polynomials satisfy a three-term
recurrence relation

XPn(X) :Pn+l(x)+cnpnfl<x)7 I’lZl,
with initial conditions Py(x) = 1 and P;(x) = x, where the parameters ¢, satisfy a
non-linear recurrence relation (see [4])

n:4cn(cn+l+cn+cn71); n>1a (10)
with ¢g =0 and ¢, =T'(3/4)/T'(1/4).

On the other hand, from (8) with s =0 (¢ = 1) and [(x) dx = x*, ie., Y(x) =

4x3 (s = 2), the polynomials {P,} satisfy a structure relation

P (x) =nPy_1(x) + dyPp3(x), n=3,

where
LI P;<x>Pn_3<x>e-X“ dr = [%, PPy 5(x) — 46 Py a(9)e ™ d
" f% P2 i(x)e" dx [7 P2 j(x)e " dx
47 e dx

=4ccp_1Cpn, n=3.
f_% Pn7 Ye=" dx ’

We consider the Sobolev inner product
o0

o0
(5= [ pate*dv iz [ pgedn paep.
and let {Q,} be the corresponding sequence of monic orthogonal polynomials.
Taking into account Proposition 1 as well as the fact that Q,(—x) = (—1)"Q,(x) we
get
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Proposition 2. The polynomial {P,} and {Q,} are related by
Pu(x) = On(X) + An2Qn-2(x), n=3. (11)

Proof. From
n—-2
Pu(x) = Ou(x) + Z An, jQj(x)
=0

for 0<<j<n— 2, we get
(), Q)5 A [T P Q) dx
||Q;H§ 10115
/lf x)x° Qf(x)e " dx
||Q,\|s '

This expression vanishes for j<n — 2. For j =n — 2 we get

f PX(x ’X4 dx

)”nn 2 —)n 2—4/1(’1 (12)
10— 2||s
On the other hand, we can observe that Q;(x) = P;(x), i=0,1,2.
Notice that
1Plls = 11Qulls + 2 51| Qa5
with
2 * 2 —x* P * / 2 —x* ” 2 —x*
|| Pnlls = ‘Pn(x)e Cdx+ 2 ‘(Pn(x)) e dx= ) P (x)e™™ dx
- > [T ;OC 2 [T ﬁj
+/1[n / P, (x)e™ dx—f—dn/ P, ;(x)e™ dx], (13)
—» —©

and using (12) we have

||Qn||§+’1i72||Qn—2||§
d o0
( S ”*j O (1=2) A / Pi(x)e™ dx>. (14)
n — 00

Gathering (13) and (14) we obtain

/ P (x)e’x4 dx + A (112 / P, (x)e’x4 dx +d? / Pﬁ_3(x)e’x4 dx)

=4 (% / P (e dx+ (1= 2 / P (e dx>.

n
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Then, dividing by [ P2(x)e™" dx we get

2 2
1+ /l(n— + d—n> =4/ (/li Cn2Cnt1 + (}’l - 2)/1112)a

Cn CnCp—1Cpn—2

or, equivalently,

n? A n
1+ i(— + 16cncn1cn2> =41 (/1— Cn2Cni1 + (n— 2))»,,2), n=3.

Cﬂ
Finally,
1 2
1 + + 16¢,¢h_1¢p-2 = 4(— Cni2Cnp1 + (n— 2)2,12), n=3, (15)
with initial conditions
4C362C1
)»1 - PR
1+ciA
8C4C3C2
}»2 = I
44+l

Notice that for n = 2m, an even non-negative integer number, we can assume

m— lil
)LZm = %17(71), mz 1,
qm(4")
where ¢,, is a polynomial of degree m. Thus, for m>1, (15) becomes
8""%%(;“71) qu2(/rl) 4m?
ComiaComi] — L4 4(2m — 2)= L ) +—+16c,,c, ¢ ,
2m+2C2m+1 qul()y_l) ( )qul(l_l) Com 2mC2m—162m-2

or, equivalently,

(27! 4m?
gm(27h) :qmli() A7+ ——+ 16ComCom—1 Com—2
8mc2m+2c2m+1 Com

. (m - 1> quZ(i_])
m ) comiaComit

If g, denotes the monic polynomial associated with g,,, i.e., ¢ = Spugm, We get

Com

o 4m?
qm(i 1) = ()L + ——+ 16¢2mCom—1C2m— 2) qm— 1( 1)

- 64(m - 1)202/1102m—1q~m—2(;b_1), m>2,

with initial conditions

oA =1 and ¢ =i"" + 2
(&)
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On the other hand, for n = 2m — 1, an odd nonnegative integer number, we can
assume

rmfl(;rl)
rm(}fl)

where r,, is a polynomial of degree m. Thus, for m>2, (15) becomes

402m — r,,(A7h P22 2m— 1)

Jom—1 = , m=1,

Com+1Com +402m—-3)———=~ =1
e Vm,l(iil) ( )rm,l(lfl) Com—1
+ 16¢2m-1¢0m—2C2m-3,
or, equivalently,
-1 2
)1 Fm-1(4"") 1, @m—1)
= A - 16Co—1Com— _
rm(/b ) 4(2m - 1)c2m+162m< * Com—1 + Com=1€om=262m =3
2m —3 _
— }’m,z(/l 1).

(2]’}’1 - 1)C2m+102m
If r,, = t,,7,, where 7, denotes the monic polynomial associated with r,,, then we get

i) = <r1 y =1y

N ,—1
+ 16¢om—1Cam—-2Cm—-3 |Fm—1(A"")
Com—1

- 16(2m - 3)26‘2,",16’2,”,2?7"1,2(1_1), mz=2,

with initial conditions

170(/17 ) =1 and fl ()fl) = ;fl +6’711

As a conclusion, {§,} and {7,,} are sequences of monic orthogonal polynomials.

4. Asymptotics of O,

First, we establish the asymptotic behavior of the sequence {4,} which appears
in (11).

Proposition 3. For the sequence {1, /+/n} we get the upper bound

do
vno 37

Furthermore, the sequence {J,//n} is convergent and

n=1.

An 1
lim ——=——. 16
n=o\/n 63 (16)
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Proof. By the extremal property of ||Q,,||§ we have

0]

10> / P it [ B (e d

— o0

Thus, for n>1, from (11)

I _ 41 [ P2, (x)e ™ dx
\/_ ||Qn||S
f 0 n+2 dx
f P2(x)e=" dx + in? f P2 (x)e " dx
_4/1\/'Cn+20n+lcn. (17)

u - n?

From the recurrence relation (10) we have, for n>2,

40,3 =n—4c,(cpp1 + epm1)<n= cn<7n,

but simple computations show that the above inequality also holds for n = 1, that is,
cn<?, n=l. (18)

Now, using this inequality in (10) we obtain

n 3
—=cp(epr1 +en+ 1) <=vVn+le,

4 2
and, then cn>2(vn’fl for n=2, but again simple computations prove that this

inequality is true for n = 1, and, therefore,

>—1 >l (19)

6vn+1
We use relations (18) and (19) in (17) obtaining, for n>2,

I I/ +2)(n+1) _/(n+2)(n+1) V5
7ﬁ< 3\/#—1-221/1 = 2n <

and straightforward computations in (12) show that this inequality holds for
n=1,2. Thus,

)Ln \/g
<—x<1

vno 3o

On the other hand, relation (15) can be rewritten as

nzl. (20)

4ncyi2Cnt

n = 1, n?
75+ 16c,cn-100-2 — 4(n—2)2p—

n=3

)
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and from here we get for n>3,

A 1
no_ ) (21)
\/ﬁ 1 l( /2 lﬁcucn—lcu—Z) _ _n=2 n=2 Jn
LN 4ANepCnirCnin N Cnt1Cn42 n /n-2
Denoting
1 1 n3/? 16¢,C_1Cn
B(n) = — +- - : (22)
4/L\/ﬁcn+26n+l 4\ cpCui1Cny2 \/ﬁanrl Cni2

n—2 [n=2
C(n) = 1/ , 23
() Cni-1Cny2 n ( )

then (21) becomes

I !
Vi B(n) - C(n) 2z 24

n—2

Taking into account that in [4] an asymptotic expansion of ¢, was established, in
particular

Cn 1
lim —=——, 25
n— o \/ﬁ 2\/§ ( )
using (25) we get
2
im B =223 i =12 (26)
n— oo 3 n— o0

Therefore, if the sequence {4,/\/n} converges, its limit » must satisfy the equation
r=1/(20/3/3 — 12r), i.e., either r = 1/6y/3 or r=+/3/2. But, from (20), it is
deduced that the limit of {/,//n}, if it exists, is 1/6+/3. Then, to conclude the proof
of this Proposition it only remains to prove that {/,/+/n} converges.

If r=1/6v/3 and 0 = ?, then, from (24), we have

n—

B(n) — C(n)2=5

A r’ _ |1 —rB(n) + rC(n)\?‘”*—z— r*C(n) + rZC(n)|.

(27)

)
On the other hand, using inequality (20) for the sequence 7"_, we have
n
C(n)\j%<0€(n) and so, for n large enough,

)~n72

B(n) — C(n) > B(n) — 0C(n)>0.
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From here we can give a bound for (27), i.e., for n large enough,

1 —rB(n) +r C(n) (22 — r) + 12C(n
)V,z_r’ | (n) (n) (5 —r) (n)|

N/ B(n) — 0C(n)
_NL=rBo) +PCO | e [z |
B(I’l) _ HC(H) B(n)—0C(n) /—n )

Now, taking into account the limits of the sequences B(n) and C(n) given in (26), we
obtain

lim sup I r‘ < % lim sup fn2 r
noow |VA %— 45 nsow |Vn=2
:; lim sup o2 —rl,
10-2V15 wooe [Vn—2
where
1 1
10 2/15 2

and, therefore, we can conclude that the sequence {1,/+/n} is convergent and its limit

isr=1/(6V3). O

We want to compare the asymptotic behavior of Q, and P, in the complex plane,
more exactly, in C\R. We get the following result:

Theorem 2. The asymptotic behavior

lim D583 28)

holds uniformly on compact subsets of C\R.

Proof. We consider the orthonormal polynomials p, with respect to the inner
product f_oc; f (x)g(x)e‘x4 dx. In [5] Loépez and Rakhmanov give the strong
asymptotics of p,, i.e., it holds uniformly on compact subsets of C\R,

DPu(x) 1

A D)o/ VR

where D, (x) is the Szegd’s function for the weight e on the segment [—Xn, Xn)], 1.€.,

/X2 — X2 [ t*
D,(x) =exp i dt
n 2 % (x — [) /x%l ) )

being x, = (47”)1/4 and ¢(x) = x+vx? — 1 is the conformal mapping of C\[—1,1]
onto the exterior of the closed unit disk.
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Thus, we can deduce that

fim 20 _
n— o pn+2(x)

)

uniformly on compact subsets of C\R. Then, for the monic polynomials P, we get

. /nPy(x)
111Ln;10 Poa(x) —2V/3, (29)

uniformly on compact subsets of C\R. Dividing relation (11) by P,(x) we obtain

Qn(x) —1- Pn—2(x) Qn—Z(x)
Pu(x) "2P(x) Pya(x)

where, using (16) and (29), we have

uniformly on compact subsets of C\R. Now, standard arguments allow us to
conclude that the sequence {Q,/P,} is convergent and its limit is the solution of the
equation s = 1 +s/3, thatis, s =3/2. O

From this theorem we deduce that the Sobolev polynomials {Q,} have the same
asymptotic behavior (up to multiplicative constant factors) as {P,} in C\R. This
occurs in other cases when the measures p, and g, involved in the Sobolev inner
product (1) with N = 1 have unbounded support (see [1,6]) but this is not the case
when the measures have compact support (see, for example, [11] or [12]). Three
natural questions arise. The first one is why does it occur? The second one is when
does it occur? Finally, can we give a more complete description of the asymptotic
behavior of the polynomials Q,? The answer to the first and second questions is yet
open for us, but we can obtain better information about the asymptotics of Q, if we
scale the variable x in a convenient way, i.e., if we look for the exterior Plancherel-
Rotach-type asymptotics for Q,. We have the following result:

Theorem 3. The asymptotic behavior

i Qo) 30(1i) 0

w5 P(x) 302 ({f3x) +1

holds uniformly on compact subsets of C\|[—~/4/3,/4/3], where p(x) = x + Vx* — 1
with Vx? — 1>0 if x> 1, i.e., the conformal mapping of C\[—1, 1] onto the exterior of
the closed unit disk.

Proof. It is well-known (see [16]) that from the three-term recurrence relation

XPn(X) = @ni1Pni1 (X) + @ppui(x), n=1,
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we can obtain asymptotic properties of the orthonormal polynomials p,. Indeed, as

. - 1
lim a

n-ow /n+j Y12
we deduce (see [16])

, for a jeR fixed,

lim £ = ,j fixed,
n— oo pn(4n+]x) (0(4 ;x) J

uniformly on compact subsets of C\[—+/4/3, v/4/3]. Then, for the monic polynomial
P, we have

4 : 4
lim %Pn_ (Vn+jx) 12

1
n— oo P,,({‘/n—i—jx) _(p(il/%x)’

j fixed, (31)

uniformly on compact subsets of C\[—+/4/3,+/4/3]. Introducing the change of
variable x —+/nx in (11) and using this relation in a recursive way, we get

o
—1)by Pyoj(Vnx), n=3,
=0
with 5" =1, bg? = TT_, /n_2:, and [a] denotes the integer part of a. Then, dividing
by P,(+/n x) we obtain
0,(V/1x) i/ 1ol Prat i)
Py(Vnx) ¥ OP(Vnx)

N

) ;i/z 1y b [, V=20 Py_y(3/nx)
=0 =2 Py(y/n x) 7

where an empty product is equal to 1. Now, we analyze the asymptotic behavior of
the factors in the above sum. If we use (16) in Proposition 3 and (31), then

lim (—1 71 Fn=2i < >, i fixed,
Jm (=Y |, Vn=2i H -2 \ev3)  ’
/— n— 2/(\/ﬁx)
l‘llLrIZ}C H (\/ﬁx)
J
2
= 7\/§ j fixed. (32)

o (V/3%) |



40 A. Cachafeiro et al. | Journal of Approximation Theory 125 (2003) 2641

This last limit holds uniformly on compact subsets of C\[—+/4/3, +/4/3]. Gathering
the above limits we get

s P \3p2(ifix) |

uniformly on compact subsets of C\[—+/4/3,y/4/3].
On the other hand, the upper bound of the sequence {4,//n} obtained in
Proposition 3 together with the limit relation (32) allow us to give a uniform bound

for (—l)jb(zj)Pn,zj(Wx)/Pn({‘/ﬁx) on C\[—+/4/3,/4/3], that is, for n large enough

and 0<j<[(n— 1)/2),
_yip Preai(Vn x)
AN

lim (~1Y b} Po (V) ! (33)

<KV,
where

0= <1

> S

and K is a constant. Therefore, we have a majorant for Q,(y/n x)/P,(s/n x) with

xeC\[—+/4/3,+/4/3]. From Lebesgue’s dominated convergence theorem together
with (33) we get

0(x) 5~ -1 (i)

lim =———= = )
n—w Pﬂ(\/ﬁx) =0 3(p2(</§1x) 3([)2({/%)() +1

uniformly on compact subsets of C\[—+/4/3,v/4/3] and thus the statement of our
theorem follows. Note that —1/(3(p2 ({/% x)) ’ <1 when xeC\[—+/4/3,+/4/3]. O
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